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Abstract 

The results are given for the calculated profile function 
of the scattering curve and primary extinction factor 
for a crystal in the form of a cylinder as a function of 
its diameter r, expressed in extinction length units and 
the Bragg angle. The calculations are based on the 
equations of the dynamical theory of X-ray diffraction. 
It is shown that the shift of the scattering curve maxi- 
mum specified by the refraction effect depends on the 
crystal diameter r. This shift for normal polarization of 
the incident X-ray radiation is found to be greater than 
that for the parallel one but at r .~ 1 for both 
polarizations it is the same. Approximate expressions 
for estimation of the primary extinction factor as a 
function of r at different Bragg angles are given. 

1. Introduction 
The study of X-ray diffraction in finite crystals on the 
basis of the dynamical theory is of importance in the 
investigation of X-ray scattering mechanisms in mosaic 
crystals and in calculating the extinction effects for 
them. The existing approximations of the theory of X- 
ray diffraction in mosaic crystals are based on the 
Darwin-Zachariasen transfer equations (Zachariasen, 
1967; Becker & Coppens, 1974) in which, as is known, 
the dynamic effects of scattering are not taken into 
account. The investigation of the polarization of X-rays 
scattered by real crystals (Olekhnovich & Schmidt, 
1977) has shown that the transfer equations have a 
limited range of application. The general theory of 
extinction for mosaic crystals on the basis of the 
dynamical diffraction theory equations (Takagi, 1962, 
1969; Taupin, 1967) was developed by Kato (1976). 
However, there are great difficulties in this method. 

Using the method of solution of the Takagi-Taupin 
equations for finite crystals (Uragami, 1969, 1970, 
1971; Afanas'ev & Kohn, 1971) we have previously 
(Olekhnovich & Olekhnovich, 1978) carried out 
calculations of the primary extinction factor and the 
angular distribution of diffracted radiation for a crystal 
block in the form of a square-section paraUelepiped. 
There arises the question of the dependence of the 
characteristics of scattered radiation on the crystal- 
block shape. The aim of this paper is to solve the 

Takagi-Taupin equations for a block in the shape of a 
circular cylinder, to calculate the primary extinction 
factor and the profile function of the scattering curve as 
a function of its diameter. 

2. Integral representation for the amplitude and power 
of radiation diffracted by a cylindrical crystal 

According to Afanas'ev & Kohn (1971), the Takagi 
(1969) equations determining the field amplitudes E 0 
and E 1 in a crystal can be written as 

c~2 g'0, 
+ 02 ~0,1 = 0, (2.1) 

c~s 0 c% 1 
where 

if0,1 = E0, l exp [iOo(S o + sl) -- ifll s I 1, (2.2) 

ao = Xo K/2,  a = (o I a2) 1/2, al = X-h CK/2,  

a2 = Xh CK/2,  

fll = aK/2  = eK sin 20s and e = 0s -- 0 is the angular 
deviation from the Bragg angle. The remaining symbols 
have their generally accepted meaning. 

Let us find expressions for the field amplitudes of the 
radiation diffracted by the cylindrical crystal, its axis 
being normal to the scattering plane. The wave incident 
at s o (Fig. 1) on the surface ToRoR has amplitude El0 ". 

A, A2' 

(a) (b) 

Fig. 1. The scheme of crystal division into the areas for calculation 
of the diffracted X-ray fields. (a) 0 < 08 _< 30 °, (b) 30 <_ 08 < 
45 ° . 
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To determine ff~ we shall use the integral form of the 
solution for (2.1) as in the case of a square-section 
parallelepiped: 

c%"~ 
~; ~1 c3V_ ds0 + V ds 1 = 0, (2.3) 

c~s0 C~Sl 

where V is the Green function. 
The Green function depends on the crystal geometry, 

as it has to fulfil certain boundary conditions at the 
crystal surface (Uragami, 1969). 

For integration contours, including the RoR area, on 
which there is only a diffracted wave, the Green 
function has to fulfil the condition 

~v/'  I = 0. 
c0s0 [ R0R 

Taking into account this condition, we find 

V~ = Jo{2a[(Soe- So)(S ,e-  s,)] 1/z } 

:o {[(s,e - s~,o)~/~]  - So} + 
~ [ ( s ,~  + S o ~ : o / : , ) -  s,] 

X J~[2a({[(sle-- S~wo) )~/~o I -  So} 

× [(Sl~; + Soe : o / ~ )  - S l l ) l / q  • (2 .4 )  

Here J0 and are are the Bessel functions of zero and 
second order respectively; SlR,~ = S~R,-  ~0 SOR,/~I is the 
intercept on the axis s~, which is cut by the trace of the 
plane R ~ R ,  (Fig. 2), being parallel to the cylinder axis 
and passing through the points R l and R o. R~ is the 
point at which the characteristic PR~ intercepts the 
cylinder surface contour in the area RoR. R o is 
the point of integration coordinate on RoR. 
~0,1 -- I cos(n.s0,~)l, n is inner normal to the plane 
RIR~,. 

,.5¢ 

A, 

4 

so 
Fig. 2. The scheme of coordinate determination. 

If the integration coordinate point is in the range 
ToR o, the point S ~R,~ coincides with S ~Ro. 

On the integration contours, including the area T o T 
where E l = 0, the Green function V r should fulfil the 
condition Vrlror = 0. Taking into account this 
condition V~ r is determined as follows: 

v ~  = J012a[ (Soe  - S o ) ( S , e  - s , ) l  '~2 } 

-]o[2O([(Sor~ + s,~ ~,~/7[)- So] 

x {[(s0e- s0r~) y ~ / ~ ] -  s, })'/2]. (2.5) 
T T Here Sorg = Sot, -- Yl Slr,/~6 is the intercept on the axis 

s o which is cut by the trace of the plane T~ T~ (Fig. 2) 
passing through the points T~ and To. T 1 is the inter- 
ception of the characteristic P '  T~ with T o T. T o is the 
point of integration coordinate on this area. yor~ = 
I cos (n r.  So. 1)1, where n r is the inner normal to the plane 
T~ T o. If the integration-coordinate point lies out of the 
range ToT then Sor,o coincides with Sot o. 

In the case of integration contours which do not 
include RoR or T o T, the Green function is determined 
by one Bessel function of zero order: 

V 1 = J{2o[(Soe - So)(Sle - sl)] v2 }. (2.6) 

Expressions (2.4) and (2.5) for the Green function 
can be used in considering a crystal of  any convex 
form. 

As in the case of the square-section parallelepiped, 
we limit our consideration to the case of the Bragg 
angle in the range from 0 to 45 °. The solution of  (2.1) 
for 0s > 45 ° is more complicated and it will be 
considered elsewhere. 

The case o f  diffraction when 0 B <_ 30 ° 

The expressions for the amplitude ~ on the areas 
RoR,  RB~, B~B 2, B 2 T of the external crystal surface 
can be found by applying (2.3) to the contours 
A2PIRoA2,  A 3 P 2 R I R o A 3 ,  AsP3A1As ,  T IP4A4ToTI  
(Fig. l a), taking into account the corresponding 
boundary conditions: 

R0 Pl 
8",e, = - i a 2  f ~o" V (  d s , -  ia2 f ~o" V (  ds,,  (2.7) 

A2 Ro 

Ro Rl 

~,e~= -~a~ : ~'~o" v~ ds,- iG~ : ~" V: ds. (2.8) 
A3 R0 

Aj 
~,alp 3 = __ i0. 2 : ffgn Vl d S l ,  ( 2 . 9 )  

A5 

A4 
file, = --ia2 f ~o" Vr  ds,, (2.10) 

To 

where ffgn is determined by (2.2) using Ei0 n. 
Let us proceed in the polar coordinate system (r, ~,) 

(Fig. 2). The polar angle ~ being read off clockwise 
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from the point R 0, the coordinates of  the crystal-surface 
points in the new coordinate system are determined as 
follows: 

s o = r(1 - cos qt)/sin 2On, 

s l =  r[1 + c o s ( 2 O s - q / ) ] / s i n 2 0  n, (2.11) 

where r is the cylinder radius. 
Then the expressions for E 1 in the indicated ranges 

can be written as 

ia2 r I f  Eio n A ,  B d E I p  , - -  - -  A ca 
sin 2On [__-ca 

+ f E t o  n A o D d  , (2.12) 
o 

E 1 p  2 - _ _  sin 20n A.. A ,  G d~, 

o 
+ : E p A  o L / d ~ +  

-(40a-~o) 

E 1 p  3 ---~ _ _  

E I p  4 - - -  

40a--ca [b¢] 
f E ~ " A , M d  , 
o 

iO" 2 r 40s-- ca 
- Aca f Eion A~ G d qJ, 

sin 20~ _ca 

iaz r [ 4oB-,~ Eio " 
sin 20 n A,~ [ f A ,  G dq/ 

- ( n -  2On) 

ca + 4Os-  2rr ] 

-- f ElonA, N d ~  . 
- (n -20D 

Here, 

A ~ = exp [-ik77 sin (0 n - (0)/cos O n 

- izrfl cos (20n - (0)/2], 

Ao = exp [ik77 sin (O n - ~) /cos  O n 

-- i~zfl c o s ( 2 O n -  ~,)/2], 

B =  [J0(Wx) + zxJE(W O] sin ( 2 0 n -  q/), 

D = [J0(Wl) + Jz(Wl)] s in(Z0 n -- ~v), 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

G = Jo(Wl) sin (20 n - ~), 

L = 

M =  

N =  

z2J2(w2) sin (20 n - ~,), 

[ J 0 ( w I )  + z 3 J 2 ( W l ) ]  sin ( 2 0 n -  ~,), 

Jo(w3) sin (20n - ~), 

where 

W 1 - -  _ _  

77 

sin 20 n 
[(cos qJ - cos (0)[cos (20 n -- (0) 

- cos (20 n -- ty)] 1/2, 

77 
w2 - - -  {2[cos ~ -  cos (40 B -- (0)1 

sin 20 s 

x [sin 3 ((0/2)/sin (20n -- (0/2) 

- - s i n  (~ ' /2 )s in  (20 n -- ~/2)] }1/2, 

77 
W a -  {2[cos (20B + ( 0 ) - c o s ( q / - 2 0 n ) ]  

sin 20 s 

x [cos (~,/2 + 0 n ) c o s ( ~ , / 2 - 0 n )  

- cos3 ((0/2 - 0n)/cos ((0/2 + 0n)]} v2, 

z] = sin ( 2 0 n -  (0/2) sin [((0 + ~,)/2] 

× { sin ((0/2) s i n [ Z 0 n -  ((0 + ~,)/2]}-' ,  

z 2 = sin ((0/2)[cos ~v - cos (40n - (0)1 

× { 2[sin 3 ((0/2) - sin (~/2)  sin (20n - ~,/2) 

× sin (20 n -  (0/2]} -t ,  

z 3 = [cos ~ -  cos (40n -- (0)]/[cos ~,-- cos (0], 

k = Fo/2C 4Fh F_ h, (2.18) 

fl = - -r f l l / zrs in20 n, 77 = 2rro2CX/-~hF_h/V is the 
cylinder diameter,  expressed in extinction length units;  
(0 is the polar angle of  the point at which the values of  
the field ampli tudes E 1 are found; F o, F h and F h are 
structure factors for 0, h and h reflections respectively; 
2 is the wavelength of X-ray  radiat ion;  v is the unit-cell 
volume;  r 0 = e2/mc 2 is the classical radius of  the 
electron. 

The case o f  diffraction when 30 < 0 s < 45 o 

The field ampli tude E 1 on the areas RoR,  R B  1 and 
B E T at 30 < 0 s < 45 o will have the same expressions 
as those given for 0 s < 30 °. To determine the field ~1 
in the area B I B  2 (Fig. lb), (2.3) is applied to the 
contour QP3 R 1RoQ and we obtain 

R , Q e v (  . _  

Ro Ro OSo 
(2.19) 

Car ry ing  out the necessary t ransformat ions  in (2.19) 
and passing to the system of  polar  coordinates,  one 
gets 

i o  2 r 
E 1 p  3 - -  _ _  

sin 208 - ( n  On) 

0 
f El0 n Ao L d ~  + 

--(40s-- ca) 

40s -- ca 
f E~o"A, M d ~  
0 

ca+40n--2n ] 
f EionA, N d ~  . 

--(n--20s) 
(2.20) 
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The primary extinction factor (Ye) is determined by 
the following integral: 

oo 

y p = A  -1 f R(fl)dfl. (2.21) 
--O0 

Here, R ([Y) is the profile function of the scattering curve 
for the considered crystal and is determined by the ratio 
of the diffracted power, at a given angle /3, to the 
integrated diffracted power in the kinematical limit. A is 
the absorption factor. 

If 0 n < 30 °, 

[ 20B 

R(fl) = (2~r9 o sin 20n) -1 f d~Ollo sin (o 
0 

40B n - -  208 

+ f dtPI2, sin ~0 + f d(PI3, p sin ~0 
20a 40a 

+ f doI4osin , (2.22) 
n-- 20a 

where 

Ij~ [ sin 20n [ 2 
= IEwll2, 

ie 2 r 
j = 1 , 2 , 3 , 4 .  (2.23) 

~ 0  is the power of the radiation incident on the crystal. 
With 30 < 0 n _< 45 o, 

20n 

R(fl) = (2zc~ 0 sin 20n) -1 f d~0Ii~ sin ~0 
0 

n - -  20B 40B 

+ f d(oI2o sin ~0 + f dtpls, ~ sin 
20a n -  20a 

+ ; d~0h~ sin q)], (2.24) 
40a J 

where I5~ is expressed in terms of the amplitude EIp3, 
(2.20), by a relation of the form (2.23). 

3. The profile function of  the scattering curve and the 
primary extinction factor 

Using the above expressions for E l, we calculated the 
function R(fl) and the primary extinction factor yp for 
the cylindrical crystal. The calculations were made for 
the plane incident wave and non-absorbing crystal 
using a program written in Fortran. 

With no absorption, k (2.18) is a real value deter- 
mining the X-ray refraction effect for diffraction from a 
crystal. This effect is revealed in a shift of the scattering 
curve maximum towards higher angles. 

The calculations allowed us to find the dependence of 
the shift of the maximum of the scattering curve (A0m) 
on the crystal diameter and the Bragg angle (Fig. 3). 
When analyzing this dependence, the shift of the 
maximum of the curve R (/3) was expressed in units of 

AOm/(Xo/sin 20 B) = 7~flm COS OB/kr. 

Here tim is the position of the scattering curve 
maximum in the scale of ft. 

The dependence of the shift of the maximum of the 
scattering curve for the block in the form of a cylinder 
on the Bragg angle and r is similar to that for a square- 
section parallelepiped. As is seen from Fig. 3, in the 
Laue case (O B = 0), the refraction effect is absent. With 
increasing Bragg angle the shift of the maximum of the 
scattering curve becomes greater. For a given value of 
the Bragg angle, the shift of the scattering curve 
maximum increases with increasing r. As the cylinder 
diameter r, expressed in extinction length units, has 
different values for the parallel and normal 
polarizations of the incident radiation (r, = r± cos 208), 
the effect of the shift of the maximum of the scattering 
curve will be greater for normal polarization than for 
parallel polarization. Fig. 4 gives the profiles of the 

A0m 

Xo/sin 20B | t_I"- 

// 

2 
O.4 

o2 

I 

0 20 40 ~o 80 
0e in d e g r e e s  

Fig. 3. Relative shift of the scattering curve maximum for the 
cylinder vs the Bragg angle for different values of r: l. r = O. 1; 2. 
r = l ; 3. r = 2. Dashed lines - approximate interpolations. 

R (fl) 

0.2 

1 1 

-3 -2 -1 0 

1 

l 2 f l  

Fig. 4. The scattering curve profile for normal (1) and parallel (2) 
polarization of the incident radiation at r~ = 2, 0 n = 30 °. 
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calculated scattering curves for the two modes of 
polarization of the incident radiation in the case where 
r± = 2. For the kinematical diffraction case (r ,~ 1), the 
profiles of the scattering curves for the two modes of 
polarization coincide. 

Fig. 5 shows the profiles of the scattering curves cal- 
culated for different values of cylinder diameter. As is 
seen from this figure, an increase of the crystal diameter 
leads to the rapid decrease of the R(fl) value in the 
principal maximum range, the half-width of the 
scattering curve increasing. It should be noted that in 
the kinematic approximation the half-width of the 
scattering curve in the chosen scale of fl might not 
depend on r. 

],R(#) 
/ 1  

2 

• 6 3 

R (#) .. 4 

i i t Ik/0,] 

.0.1 5 

, 
-3 -2 -1 0 1 2 B -2 -1 0 2 B 

Fig. 5. The profile of the scattering curve for the cylindrical crystal 
as a function of its diameter: 1. r ~  1; 2. r =  0.5; 3. r =  1.0; 4. r 
= 1.5; 5. r = 2; with k = 2. (a) 0~ = 10 °, (b) 0 B = 40 °. 

From Fig. 6, it can be seen that the primary 
extinction factor for the crystal cylinder does not 
depend on the Bragg angle when its diameter does not 
exceed the extinction length. When the cylinder 
diameter exceeds the extinction length, the primary 
extinction factor is a function of not only r but also the 
Bragg angle. 

The primary extinction factor can be estimated with 
an error of 2% using the following approximate 
expression valid for 3 >_ r _> 0.60 + 2-32 cos 4 0B: 

yp =y°{1  + 0 . 3 3 5 [ r -  (0.60 + 2.32 cos 40B)] 3/2 } 

(3.1) 

and for r < 0.60 + 2.32 cos 4 0~: 

yp= yO. (3.2) 

Here, yO is the primary extinction factor at 0B = 0, 
which, as follows from the solution of (2.1), is deter- 
mined by the expression: 

2 '~ 1 yO=_ f dip sin 2 ~0 f j g ( r v / 1 -  x2) dx. (3.3) 
0 

0 

yO can be estimated with an error of 0 .5% with the 
following approximation, valid for r < 4: 

yO = exp [_(r/2)21 

+ 0.147 exp [ -0 .45  ( r -  4.2)21. (3.4) 

At 0B = 0, the primary extinction factor for r > 3 is 
weakly affected by oscillation, which is a characteristic 
of the Laue case. 

0-75 

0-5 ~ ~ , /  

3 
0.25 ~ 2  

t 
I 2 3 zl r 

Fig. 6. Primary extinction factor v s  cylinder diameter for different 
Bragg angles: 1 .0°;  2. 20°;  3 .30° ;  4 .40° ;  and 5.45 °. 

Conclusions 

On the basis of the solution of the equations of the 
dynamical theory of X-ray diffraction, the primary 
extinction factor and the profile of the scattering curve 
for a crystal in the form of a cylinder have been cal- 
culated. Earlier, the same calculations were carried out 
by us (Olekhnovich & Olekhnovich, 1978)for a crystal 
in the form of a square-section parallelepiped. The 
comparison of the results of these two calculations 
makes it possible to determine the dependence of 
diffraction properties on the crystal shape. 

The primary extinction factor for both the cylinder 
and the square-section parallelepiped, in the case where 
the crystal size does not exceed the extinction length, 
does not depend on the Bragg angle and the character 
of the variation ofyp as a function of r for both crystal- 
block shapes is almost the same. For blocks, the size of 
which exceeds the extinction length (r > 1), the 
dependence ofyp on r is somewhat different, especially 
at small Bragg angles. 

The shift effect of the scattering curve maximum, due 
to the zero Fourier component of polarizability, in both 
cases depends on the ratio of the crystal size to the 
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extinction length. It means that for a given crystal size, 
the scattering curve in the case of normal polarization 
of the incident radiation is shifted towards a larger 
angle than in the case of parallel polarization. The 
scattering curve shift for both modes of polarization is 
equal only for r ,~ 1. 

We would like to thank the referee for his helpful 
comments for improvements to the paper. 
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Abstract 

The problem of crystal-structure analysis can be given 
a form which exhibits dual quasi-symmetry. The orthog- 
onality of the Fourier waves and the non-interpene- 
tration of the atoms play a complementary role; this 
holds not only formally but also with respect to the 
separation of the coordinates of the atoms and the 
phases of the structure factors. The remarkable fact 
that the Patterson function is described by a con- 
volution in direct space, while Sayre's equation is a 
convolution in reciprocal space may be understood as a 
part of the symmetry. 

Introduction 

The kinds of experiments and theoretical procedures 
which are used for crystal-structure analysis are 
numerous. 

In most cases of structure analysis, the experimental 
investigations of the crystal to be analysed are 
restricted to: 

the quantitative chemical analysis, 
the determination of the density, 
the measurement of the Bragg angles of a number of 

reflexions, sufficient for the calculation of the lattice 
parameters, 

0567-7394/80/010027-06501.00 

the measurement of the integral intensities of the 
reflexions with scattering vectors of length less than the 
reciprocal of the desired resolution of the scattering 
density function of the crystal. 

From the results of these experiments the following 
properties of the crystal structure, unknown as a whole, 
can be deduced by routine application of the laws of 
physics (see textbooks of crystal-structure analysis): 

the lattice constants a 1, a2, a 3 and the volume V of 
the unit cell, 

the number p of the chemical elements contained in 
the specimen and the numbers q(ct),/~ = 1, 2 . . . .  , p, of 
the atoms of different kinds in its elementary cell, 

the moduli II/2(m) of the structure factors of the 
scattering density function p(x) of the crystal on a 
relative scale for all lattice points m with Im1-1 less 
than the desired resolution, 

the form factors /3,(m) and hence the scattering 
density function p , (x) , / t  = 1, 2 . . . .  , p, of the atoms of 
the structure. 

The system of information just described is 
necessary and sufficient for the application of the 
routine methods of crystal-structure analysis, now in 
common use, e.g. M U L T A N  (Germain, Main & 
Woolfson, 1971). Besides its practical importance, it is 
also of special theoretical interest because the problem 
of crystal-structure analysis, based on this class of 
information, can be formulated in a dual quasi- 
symmetric way. 
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